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Abstract 
Smoothing of contact surfaces can be used to eliminate the chatter typically seen with node on facet con- 
tact and give a better representation of the actual contact surface. The latter affect is well demonstrated 
for problems with interference fits. In this work we present two methods for the smoothing of contact 
surfaces for 3D finite element contact. In the first method, we employ Gregory patches to smooth the 
faceted surface in  a node on facet implementation. In the second method, we employ a Bezier inter- 
polation of the faceted surface in a mortar method implementation of contact. As is well known, node 
on facet approaches can exhibit locking due to the failure of the Babuska-Brezzi condition and in some 
instances fail the patch test. The mortar method implementation is stable and provides optimal conver- 
gence in the energy of error. In  the this work we demonstrate the superiority of the smoothed versus the 
non-smoothed node on facet implementations. We also show where the node on facet method fails and 
some results from the smoothed mortar method implementation. 

'Work performed under the auspices of the U.S. Depanment of Energy by Lawrence Livermore National Laboratory under 
Contract W-7405-Eng-48. 
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1 Introduction 

Low order elements such as linear tetrahedrals and tri-liner hexahedrons are typically the element of 
choice for most finite element analysis, particularly for non-linear analysis. One side effect of low order 
elements is the non-smooth faceted surface they form. This surface can cause convergence problems for 
the classical node on facet method [ 13 due to jumps in  surface normals at facet edges. This convergence 
problem can be alleviated by interpolating the faceted surface with a smooth surface and using the smooth 
surface to determine contact gap and slip information (Figure 1). A 3D implementation of smoothed node 
on facet contact was given in  [2]. There it was shown that very robust convergence behavior could be 
achieved with smoothing. An additional benefit to smoothing is the enhanced surface representation it 
provides, particularly for coarse meshes. The smoothed surface eliminates the “bumping” exhibited by 
the faceted surfaces when sliding relative to each other and also better resolves interference fits. 

On the other hand, the classic method from [ I ] ,  and the smoothed version [2] are not guaranteed to 
be Babuska-Brezzi stable. Furthermore, the method will not solve the (flat surface) patch test when 
elements are warped. In response, approaches using contact elements [3,4], mortar methods [5 ,  6,  7, 81 
and intermediate contact frames 191 for example, have been developed in an attempt to satisfy the patch 
test and stability requirements. So far, most of these implementations have been for 2D contact. In this 
work, we incorporate surface smoothing into a mortar method implementation. The main motivation is 
to get a better surface representation for such problems as interference fits. 

2 Surface Interpolation 

2.1 Techniques 

The field of Computer-Aided Geometric Design (CAGD) has yielded numerous techniques for 3D sur- 
face interpolation [IO]. Methods that form composite surfaces from patches seem to be the best suited 
for finite element implementation since the needed data for the patch interpolation is defined locally. One 
common interpolation method uses Hermite polynomials to form a C1 interpolation of the surface when 
a regular mesh is given (Figure 2). Here, a regular mesh is considered one where there is four facets 
meeting at a vertex everwhere except on surface boundaries. 

Figure 1: (a) Finite element mesh of a sphere with surface formed by 24 bilinear facets. (b) Tangent 
plane continuous surface representation using Gregory patches. 
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Figure 2: The facet given by coordinates (zi, i = 1 : 4) with edges from adjacent elements (q, i = 5 , 1 2 )  
defines a Hermite patch. Isoparanietric coordinates s and t are defined as shown. 

In our implementation, a zero twist estimation (note the bottom four zeroes) is used in  Gi and the 
parametric derivatives can be defined by differencing adjacent nodes. For example, referring to Figure 2, 
the derivative at z(0,O) is found 

Z . , S ( O , O )  = 1/2  ( 2 2  - 2 5 )  (4) 

By rewriting ( I ) ,  the canonical shape function form for the patch results 

12 

i = l  

where f i ~  are computed according to (1-3). The problem with this method is that it will only produce 
CI continuity everywhere for a regular mesh. In the event of a regular mesh, the method can still be 
employed but will not provide CI continuity at vertices. 

An alternative patch called the Gregory patch can be used to give G1 (tangent plane) continuity every- 
where for an arbitrary mesh. Whereas, the Hermite patch can be viewed as a version of the Bezier patch, 
the Gregory patch can be viewed as a generalized Bezier patch with the control net shown in  Figure 3. 
The parametric representation for the patch is given 

3 3  
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Figure 3: Control net for Gregory patch. 

where s and t are the parametric coordinates, 
i n  (6) are written as functions of the surface parameters. 

are the Bezier functions [ I O ] ,  the interior control points 

Z l l ( S , t )  = (SZ110 + tzl l l) /(s + t )  
z 2 1 ( s , t )  = ((1 - s ) 2 2 1 a + t 2 2 1 1 ) / ( 1 - s f t )  

2 1 2 ( S , t )  = (sz120 + (1 - t ) z m ) / ( s  + 1 - t )  
4 s ,  t )  = ((1 - S)Z220 + (1 - t ) z 2 2 1 ) / ( 1  - s + 1 - t )  (7 )  

and the remaining control points are independent of s and t .  In [2]. the method for determining the ap- 
propriate control net (Figure 3) to smoothly interpolate a finite element mesh is developed. In [ 2 ] ,  vertex 
normals are defined at facet vertices by averaging adjacent facet normals. With these vertex normals and 
coordinates, the formulas from [ 121 are employed to produce a tangent plane continuous surface. Fur- 
thermore, the appropriate friction formulation is developed such that the slip velocity is smooth as nodes 
transition across element boundaries. 

3 Mortar Method 

3.1 Mortar lntegrals 

The mortar method uses integral equations to satisfy the boundary constraint. For mesh tying this 
amounts to solving 

p .  (ul - u2)dr = 0 (8) 

where ut i = 1 , 2  are the displacements on the non-mortar and mortar side respectively and p is the 
Lagrange multiplier interpolation field. In the proposed smoothed mortar method implementation (Figure 
4), a smoothed surface (r2) i s  tied to the faceted finite element surface (I") using (8).  The smooth surface 
adopts the identical mesh as side 1 but uses the interpolation given by ( 5 ) .  The following discretizations 
for p, u1 and u 2  

nr n 1  n' 

A = l  B=l B=1 
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Figure 4: Smooth surface l?2 tied to mesh surface rl. Contacting surface shown as r3. 

are used in (8) where N i  are the standard bilinear shape functions defined for the 7 i 1  nodes on the non- 
mortar surface and fii are the shape functions from ( 5 )  (re-numbered). A variety of forms for ~ j l  exists 
for the multiplier interpolation but the most convenient for this implementation is the dual formulation 
given in [ 131. As shown in [ 141, the displacements ua can efiectively be eliminated from the system and 
replaced by a weighted sum of the displacements u l .  Now a mortar implementation of unilateral contact 
is applied between surfaces r2 and r3. A number of mortar contact methods have been proposed e.g. 
[ 5 ,  6, 7, 81 although most were not developed for large deformations. One possible large deformation 
implementation uses the constraint metric 

V A  = *A(=' - x 3 )  d? = 0 (10) 

For normal contact (Le. no friction), a "normal" is need to determine the amount of penetration One 
definition would be to average the normal over the facets which intersect the support for shape function 
A to produce a mean normal Y.4. The contact gap, pressure and unilateral constraint are then defined (no 
sum over A): 

4 Examples 

4.1 

In this example, taken from [ 2 ] ,  smooth and non-smoothed node on facet contact is compared. An inter- 
ference fit of concentric spheres is used to demonstrate the superior accuracy of surface smoothing. A 
spherical shell (Ri = 1.0, R, = 1.1) is composed of a thermal material with E = 5 x lo'', v = 
0, a = 1 x and surrounded by two rigid spherical shells (Figure 5) .  The central flexible shell is 
connected (merged) to the outer rigid shell and separated by a contact surface from the inner rigid shell. 
Augmented Lagrange contact with a Coulomb friction coefficient of = 0.1 was employed. The loading 
sequence is as follows: 

Example 1: rotating spheres with friction using node on facet algorithm 

1. In the first time step, the central spherical shell is heated 1000 temperature units thus 
applying a thermal strain of 0.01 

'cy G thermal expansion coefficient 
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Rigid Rotate 
Flexible n 

Figure 5 :  Concentric spheres (864 elements) demonstrated in example 1 
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Figure 6: Moment versus rotation from rotating concentric spheres. 
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Figure 7: (a) Mesh pattern on upper surface. (b) Mesh pattern on bottom surface. (c) Upper and lower 
meshes at contact interface and subjected to homogenous stress ( a ,  ). 

2. The outer sphere is then rotated (Figure 5 )  through 45 deg in 20 steps (2.25 dcg per step). 

The applied moment was analytically calculated to be 4.93071 x 10'. Simulations using four different 
meshes were made: 96 elements, 384 elements, 864 elements and 7776 elements3. The moments com- 
puted in simulations using both smoothed and non-smoothed contact for the four different meshes is 
shown in Figure 6. The non-smoothed cases using 96, 384 and 863 elements were orders of magnitude 
off and were not shown. The computed moment for the 7776 element mesh using smoothing was exact 
within four decimal places of the analytical solution. The 96 element mesh with smoothing produced 
very good results for small rotations and overall was nearly as gcad as the 7776 element non-smoothed 
mesh. As seen in Figure 1 ., the smoothed surface gives a good representation of a sphere with a relatively 
coarse mesh. A convergence tolerance of 1 x and 1 x lo-' was used with the smoothed and non- 
smoothed contact respectively. In many time steps using the non-smoothed method, convergence could 
not be achieved in 20 steps. Nevertheless, the analysis was forced to proceede to the next time step to 
facilitate a solution. 

4.2 Example 2: patch test 

In this example, the patch test is considered for both the node on facet and mortar methods and their 
smoothed and non-smoothed implementations. When elements are rectangular, the node on facet algo- 
rithms solve the patch test exactly as do the mortar methods of course. Figure 7. shows the mesh used 
for a warped facet patch test where two blocks (Figure 7.a.b) are contacting. Using the mortar integral 
integration approach given in [ 151, the non-smoothed and smoothed mortar methods are exact to 8 and 
5 decimal places respectively. The error is due to the inaccuracies of integration. Integration schemes 
that exactly satisfy this patch test are available and will be presented in  future work. Errors for the two 
pass node on facet technique are 0.3 1 % and 1.65% for non-smoothed and smoothed contact respectively. 
These errors are not exorbitant but two pass algorithms are inherently unstable. The single pass errors 
ran about 6.0%-18.4% depending on which side the slave side uas defined on and whether smoothing 
was used. 

'Only the flexible elements are counted here, none of the rigid sphere elements are counted 
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non-smooth node on segment 
smooth node on segment 
non-smooth mortar 
smooth mortar 

(a1 (b) 

Figure 8: (a) Concentric cylinders. (b) Concentric cylinders rotated. 

5.6 x lo-’ 
1.5 x 10-3 
5.1 x 10-4 
1.9 x 10-5 

Table I : Maximum pressure for rotating cylinder 

I contact method I max. pressure I 

4.3 Example 3: rotating cylinders using node on facet and mortar methods 

In this example, interference fits are evaluated for both node on facet and mortar methods, with and 
without smoothing. Since friction has not been implemented yet, a simpler test compared to Example 1 
is used to evaluate the mortar methods. In this test, concentric cylinders (Figure 8) are rotated relative 
to each other and the internal pressure is checked to determine the amount of error in the interference 
fit. Identical materials are used for both cylinders and the outer cylinder cannot expand radially along 
the outer boundary whereas the inner boundary of the inner cylinder is free. Ideally, the internal pressure 
should be zero. The results for the different cases are shown in  Table 1. The smoothed node on segment 
(2D) method is 36 times better than the non-smoothed method. Surprisingly, the non-smooth method is 
about 3 times better than the smoothed node on segment. Finally the smoothed mortar method is 27 times 
better than the non-smoothed method. Overall, the smooth mortar method is about 3000 times better than 
the classic non-smooth node on segment. This represents a significant improvement in the technology. 

5 Discussion 

In this work, smoothed node on facet and mortar contact algorithms were presented. It was found that 
smoothing can vastly improve convergence behavior for node on facet algorithms. Furthermore, better 
surface representation can be acquired by smoothing for both node on facet and mortar methods. Further 
investigation of smooth mortar element methods is in  process. 
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